首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1060篇
  免费   91篇
  国内免费   45篇
  2023年   10篇
  2022年   6篇
  2021年   21篇
  2020年   23篇
  2019年   25篇
  2018年   30篇
  2017年   25篇
  2016年   29篇
  2015年   32篇
  2014年   77篇
  2013年   90篇
  2012年   58篇
  2011年   81篇
  2010年   43篇
  2009年   87篇
  2008年   58篇
  2007年   71篇
  2006年   56篇
  2005年   42篇
  2004年   37篇
  2003年   41篇
  2002年   27篇
  2001年   14篇
  2000年   15篇
  1999年   20篇
  1998年   14篇
  1997年   13篇
  1996年   14篇
  1995年   7篇
  1994年   11篇
  1993年   8篇
  1992年   10篇
  1991年   7篇
  1990年   11篇
  1989年   6篇
  1988年   4篇
  1987年   8篇
  1986年   3篇
  1985年   13篇
  1984年   12篇
  1983年   9篇
  1982年   10篇
  1981年   8篇
  1980年   1篇
  1979年   1篇
  1977年   3篇
  1976年   2篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有1196条查询结果,搜索用时 15 毫秒
81.
82.
Kundu M  Sen PC  Das KP 《Biopolymers》2007,86(3):177-192
Small heat shock protein alphaA-crystallin, the major protein of the eye lens, is a molecular chaperone. It consists of a highly conserved central domain flanked by the N-terminal and C-terminal regions. In this article we studied the role of the N-terminal domain in the structure and chaperone function of alphaA-crystallin. Using site directed truncation we raised several deletion mutants of alphaA-crystallin and their protein products were expressed in Escherichia coli. Size exclusion chromatography of these purified proteins showed that deletion from the N-terminal beyond the first 20 residues drastically reduced the oligomeric association of alphaA-crystallin and its complete removal resulted in a tetramer. Chaperone activity of alphaA-crystallin, determined by thermal and nonthermal aggregation and refolding assay, decreased with increasing length of deletion and little activity was observed for the tetramer. However it was revealed that N-terminal regions were not responsible for specific recognition of natural substrates and that low affinity substrate binding sites existed in other part of the molecule. The number of exposed hydrophobic sites and the affinity of binding hydrophobic probe bis-ANS as well as protein substrates decreased with N-terminal deletion. The stability of the mutant proteins decreased with increase in the length of deletion. The role of thermodynamic stability, oligomeric size, and surface hydrophobicity in chaperone function is discussed. Detailed analysis showed that the most important role of N-terminal region is to control the oligomerization, which is crucial for the stability and in vivo survival of this protein molecule.  相似文献   
83.
The amino terminal domain of collagen type XI alpha1 chain is a noncollagenous structure that is essential for the regulation of fibrillogenesis in developing cartilage. The amino terminal domain is alternatively spliced at the mRNA level, resulting in proteins expressed as splice variants. These splice variants, or isoforms, have unique distribution in growing tissues, alluding to distinct roles in development. We report here a rapid and straightforward method for expression, purification and in vitro folding of recombinant collagen XI isoforms alpha1(XI) NTD[p7] and alpha1(XI) NTD[p6b+7]. The recombinant isoforms were expressed in Escherichia coli as bacterial inclusion bodies. Unfolded carboxy terminal polyhistidine tagged proteins were purified via nickel affinity chromatography and refolded with specific protocols optimized for each isoform. Purity was assessed by SDS-PAGE and correct secondary structure by a comparison of circular dichroism data with that obtained for Npp. Protein expression and purification of the recombinant collagen XI splice variants will allow further studies to elucidate the structure and molecular interactions with components of the extracellular matrix. This research will clarify the mechanism of collagen XI mediated regulation of collagen fibrillogenesis.  相似文献   
84.
85.
Although northern peatlands contribute significantly to natural methane emissions, recent studies of the importance and type of methanogenesis in these systems have provided conflicting results. Mechanisms controlling methanogenesis in northern peatlands remain poorly understood, despite the importance of methane as a greenhouse gas. We used 16S rRNA gene retrieval and denaturing gradient gel electrophoresis (DGGE) to analyse archaeal communities in 15 high-latitude peatland sites in Alaska and three mid-latitude peatland sites in Massachusetts. Archaeal community composition was analysed in the context of environmental, vegetation and biogeochemical factors characterized in a parallel study. Phylogenetic analysis revealed that Alaskan sites were dominated by a cluster of uncultivated crenarchaeotes and members of the families Methanomicrobiaceae and Methanobacteriaceae, which are not acetoclastic. Members of the acetoclastic family Methanosarcinaceae were not detected, whereas those of the family Methanosaetaceae were either not detected or were minor. These results are consistent with biogeochemical evidence that acetoclastic methanogenesis is not a predominant terminal decomposition pathway in most of the sites analysed. Ordination analyses indicated a link between vegetation type and archaeal community composition, suggesting that plants (and/or the environmental conditions that control their distribution) influence both archaeal community activity and dynamics.  相似文献   
86.
87.
88.
89.
90.
We have investigated the mechanisms by which activation of cannabinoid receptors reduces glutamate release from cerebrocortical nerve terminals. Glutamate release evoked by depolarization of nerve terminals with high KCl (30 mmol/L) involves N and P/Q type Ca(2+)channel activation. However, this release of glutamate is independent of Na(+) or K(+) channel activation as it was unaffected by blockers of these channels (tetrodotoxin -TTX- or tetraethylammonium TEA). Under these conditions in which only Ca(2+) channels contribute to pre-synaptic activity, the activation of cannabinoid receptors with WIN55,212-2 moderately reduced glutamate release (26.4 +/- 1.2%) by a mechanism that in this in vitro model is resistant to TTX and consistent with the inhibition of Ca(2+) channels. However, when nerve terminals are stimulated with low KCl concentrations (5-10 mmol/L) glutamate release is affected by both Ca(2+) antagonists and also by TTX and TEA, indicating the participation of Na(+) and K(+) channel firing in addition to Ca(2+) channel activation. Interestingly, stimulation of nerve terminals with low KCl concentrations uncovered a mechanism that further inhibited glutamate release (81.78 +/- 4.9%) and that was fully reversed by TEA. This additional mechanism is TTX-sensitive and consistent with the activation of K(+) channels. Furthermore, Ca(2+) imaging of single boutons demonstrated that the two pre-synaptic mechanisms by which cannabinoid receptors reduce glutamate release operate in distinct populations of nerve terminals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号